Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Med (N Y) ; 3(7): 468-480.e5, 2022 07 08.
Article in English | MEDLINE | ID: covidwho-1851770

ABSTRACT

BACKGROUND: Much remains unknown regarding the response of the immune system to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccination. METHODS: We employed circulating cell-free DNA (cfDNA) to assess the turnover of specific immune cell types following administration of the Pfizer/BioNTech vaccine. FINDINGS: The levels of B cell cfDNA after the primary dose correlated with development of neutralizing antibodies and memory B cells after the booster, revealing a link between early B cell turnover-potentially reflecting affinity maturation-and later development of effective humoral response. We also observed co-elevation of B cell, T cell, and monocyte cfDNA after the booster, underscoring the involvement of innate immune cell turnover in the development of humoral and cellular adaptive immunity. Actual cell counts remained largely stable following vaccination, other than a previously demonstrated temporary reduction in neutrophil and lymphocyte counts. CONCLUSIONS: Immune cfDNA dynamics reveal the crucial role of the primary SARS-CoV-2 vaccine in shaping responses of the immune system following the booster vaccine. FUNDING: This work was supported by a generous gift from Shlomo Kramer. Supported by grants from Human Islet Research Network (HIRN UC4DK116274 and UC4DK104216 to R.S. and Y.D.), Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, The Alex U Soyka Pancreatic Cancer Fund, The Israel Science Foundation, the Waldholtz/Pakula family, the Robert M. and Marilyn Sternberg Family Charitable Foundation, the Helmsley Charitable Trust, Grail, and the DON Foundation (to Y.D.). Y.D. holds the Walter and Greta Stiel Chair and Research Grant in Heart Studies. I.F.-F. received a fellowship from the Glassman Hebrew University Diabetes Center.


Subject(s)
BNT162 Vaccine , COVID-19 , Cell-Free Nucleic Acids , SARS-CoV-2 , Adult , Aged , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/immunology , Female , Humans , Immunization, Secondary , Male , Memory B Cells/immunology , Memory B Cells/metabolism , Middle Aged , SARS-CoV-2/immunology , Young Adult
2.
Sci Transl Med ; 13(589)2021 04 14.
Article in English | MEDLINE | ID: covidwho-1096971

ABSTRACT

Pooling multiple swab samples before RNA extraction and real-time reverse transcription polymerase chain reaction (RT-PCR) analysis has been proposed as a strategy to reduce costs and increase throughput of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tests. However, reports on practical large-scale group testing for SARS-CoV-2 have been scant. Key open questions concern reduced sensitivity due to sample dilution, the rate of false positives, the actual efficiency (number of tests saved by pooling), and the impact of infection rate in the population on assay performance. Here, we report an analysis of 133,816 samples collected between April and September 2020 and tested by Dorfman pooling for the presence of SARS-CoV-2. We spared 76% of RNA extraction and RT-PCR tests, despite the frequently changing prevalence (0.5 to 6%). We observed pooling efficiency and sensitivity that exceeded theoretical predictions, which resulted from the nonrandom distribution of positive samples in pools. Overall, our findings support the use of pooling for efficient large-scale SARS-CoV-2 testing.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL